Program:FE (All Branches)

Curriculum Scheme: Revised 2019

Examination: First Year Semester I

Course Code: FEC 102 Course Name: Engineering Physics -I

Time: 1 hour Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	The critical field of Niobium is $1x10^5$ A/m at 8K and $2x10^5$ A/m at 0K. Calculate critical temperature of the element.
Option A:	$T_c = 0.113 \text{ K}$
Option B:	$T_c = 113 \text{ K}$
Option C:	$T_{c} = 11.3 \text{ K}$
Option C:	$T_c = 1.13 \text{ K}$
Орион Б.	1 _C = 1.13 K
Q2.	At temperature =37°C,the energy gained by electron is = ev
Option A:	0.0267 eV
Option B:	2.67 eV
Option C:	0.267eV
Option D:	26.7eV
Q3.	The energy of a particle is proportional to
Option A:	n
Option B:	n ⁻¹
Option C:	n ⁻²
Option D:	n²
Q4.	Calculate the glancing angle on the plane(100) for a crystal of a rock salt (a
	=2.125 A. Consider the case of 2 nd order maximum and wavelength 0.592 A
Option A:	θ = 16.17
Option B:	θ = 167
Option C:	$\Theta = 0.167$
Option D:	θ = 11.6
Q5.	In direct bandgap semiconductor, occurs at the same
	momentum, when energy is supplied.
Option A:	maxima of valence band and minima of conduction band
Option B:	minima of valence band and maxima of conduction band
Option C:	Maxima of valence band and conduction band
Option D:	None of the above
Q6.	Type I multiferroics are the materials in which the ferroelectricity and

	magnetization occurs at
Ontion A:	
Option A:	Same temperature
Option B:	Different temperature
Option C:	Zero temperature
Option D:	None of these
Q7.	In Newton's rings experiment, the diameter of 4 th and 12 th dark ring are 0.4 cm
	and 0.7 cm respectively. Find the diameter of 20 th dark ring.
Option A:	0.95 cm
Option B:	0.91 cm
Option C:	0.93 cm
Option D:	0.99 cm
Q8.	Matter waves travels
Option A:	With the same speed of light
Option B:	Faster than light
Option C:	Slower than light
Option D:	None of the above
'	
Q9.	Which of the following equation describes Bragg's law of diffraction? (Assume
Δ3.	that all symbols have their usual meaning.)
Option A:	$2d \sin \theta = \lambda$
Option B:	2d = nλ
Option C:	$2d \sin\theta = n\lambda$
Option D:	$2d = n\lambda \sin\theta$
Орион Б.	24 - 11/(31110
Q10.	In Newton's rings experiment thelens is used.
Option A:	Convex
Option B:	Concave
Option C:	Plano-convex
Option D:	Plano-concave
Орион Б.	Fidito-concave
011	In intrinsic Ge the carrier concentration is 2. 5 x 10 ¹⁹ /m ³ .The electron and hole
Q11.	mobilities are 0.39 m ² /v-sec and 0.17 m ² /V-sec. Find the resistance of a Ge rod
	of 2cm x 1mm x1mm dimension.
Ontion A	8.928x10 3 Ω
Option A:	$7.065 \times 10^{3} \Omega$
Option B:	$6.546 \times 10^{3} \Omega$
Option C:	
Option D:	5.546x 10 ³ Ω
042	N. 1 2. C 1 1 1 1 1 1 1.
Q12.	N-type Ge sample has donor concentration 10 ²¹ atoms/m ³ . What Hall voltage
	would you expect if current of 1 mA and magnetic field 0.5T is applied across
	2mm thick sample.
Option A:	2.50 mV
Option B:	1.56mV
Option C:	3.56 mV

Option D:	9 mV
Q13.	An electron is bound in an one dimensional potential well of width 2 A. Find its
	energy value in the ground state?
Option A:	1.51 x 10 ⁻¹⁸ J
Option B:	2.53 x 10 ⁻¹⁸ J
Option C:	3.52 10 ⁻¹⁸ J
Option D:	4.62 x 10 ⁻¹⁸ J
Q14.	Find the thickness of the soap film which appears yellow (λ =5896 A) in reflection when it is illuminated by white light at an angle of 45°. Given refractive index of the thin film =1.33
Option A:	2300 A°
Option B:	3500 A°
Option C:	6500 A°
Option D:	1308 A°
Q15.	Which of the following is not a characteristic of wave function?
Option A:	Continuous
Option B:	Single-valued
Option C:	Differentiable
Option D:	Physically significant
Q16.	Determine the de-Brogile wavelength of an electron accelerated by a potential
	difference of 150 V.
Option A:	2.0056 x10 ⁻¹⁰ m
Option B:	2.5213 x10 ⁻¹⁰ m
Option C:	1.0031 x 10 ⁻¹⁰ m
Option D:	1.9068 x10 ⁻¹⁰ m
Q17.	Calculate the frequency and wavelength of a photon whose energy is 75 eV
Option A:	Frequency =18.13x10 ¹⁵ Hz, Wavelength = 165.5 A°
Option B:	Frequency = 20.25 x10 ¹⁵ Hz, Wavelength = 189 A ^o
Option C:	Frequency =35.56x10 ¹⁵ Hz, Wavelength = 192 A ^o
Option D:	Frequency = 65.23x10 ¹⁵ Hz, Wavelength = 175 A ^o
Q18.	What is a probability of an electron being thermally excited to the conduction
	band is Si at 30 . The band gap energy is 1.12 eV
Option A:	6.5×10^{-10}
Option B:	8.9 x 10 ⁻¹⁰
Option C:	3.9 x 10 ⁻¹⁰
Option D:	9.6 x 10 ⁻¹⁰
Q19.	The magnetic lines of force cannot penetrate the body of a superconductor, a
	phenomenon is known as
Option A:	Isotopic effect

Option B:	Meissner effect
Option C:	BCS theory
Option D:	Josephson effect
Q20.	Calculate the maximum order of diffraction if X-rays of wavelength 0.819 A is
	incident on a crystal of lattice spacing 0.282 nm.
Option A:	6
Option B:	5
Option C:	4
Option D:	3
Q21.	Electrons can not pre-exist in free states in a nucleus . We can prove this using
Option A:	Time dependent Schrödinger equation
Option B:	Time independent Schrödinger equation
Option C:	Heisenberg's uncertainty principle
Option D:	Option A & Option B
Q22.	The temperature at which conductivity of a material becomes infinite is called
Option A:	Critical temperature
Option B:	Absolute temperature
Option C:	Mean temperature
Option D:	Crystallization temperature
Q23.	A wedge shaped air film is illuminated by light of wavelength 4650 A°. The angle
	of wedge is 40 seconds. Calculate the separation between two consecutive
	fringes.
Option A:	2.536 x10 ⁻³ m
Option B:	1.199 x10 ⁻³ m
Option C:	3.650 x10 ⁻³ m
Option D:	4.569x10 ⁻³ m
Q24.	Multiferroics are the materials that exhibit properties like
Option A:	Ferromagnetism
Option B:	Ferroelectricity
Option C:	Ferro elasticity
Option D:	All of the above
Q25.	A plane is parallel to an axis. What is its Miller Index?
Option A:	Infinity
Option B:	Zero
Option C:	One
Option D:	Finite