Program:FE (All Branches)

Curriculum Scheme: Revised 2019
Examination: First Year Semester I

Course Code: FEC 102
Time: 1 hour

Course Name: Engineering Physics -I Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	The critical field of Niobium is $1 \times 10^{5} \mathrm{~A} / \mathrm{m}$ at 8 K and $2 \times 10^{5} \mathrm{~A} / \mathrm{m}$ at 0 K . Calculate critical temperature of the element.
Option A:	$\mathrm{T}_{\mathrm{c}}=0.113 \mathrm{~K}$
Option B:	$\mathrm{T}_{\mathrm{c}}=113 \mathrm{~K}$
Option C:	$\mathrm{T}_{\mathrm{c}}=11.3 \mathrm{~K}$
Option D:	$\mathrm{T}_{\mathrm{c}}=1.13 \mathrm{~K}$
Q2.	At temperature $=37^{\circ} \mathrm{C}$, the energy gained by electron is = ev
Option A:	0.0267 eV
Option B:	2.67 eV
Option C:	0.267 eV
Option D:	26.7 eV
Q3.	The energy of a particle is proportional to
Option A:	n
Option B:	n^{-1}
Option C:	n^{-2}
Option D:	n^{2}
Q4.	Calculate the glancing angle on the plane(100) for a crystal of a rock salt (a $=2.125 \mathrm{~A}$. Consider the case of $2^{\text {nd }}$ order maximum and wavelength 0.592 A
Option A:	$\theta=16.17$
Option B:	$\theta=167$
Option C:	$\theta=0.167$
Option D:	$\theta=11.6$
Q5.	In direct bandgap semiconductor, \qquad occurs at the same momentum, when energy is supplied.
Option A:	maxima of valence band and minima of conduction band
Option B:	minima of valence band and maxima of conduction band
Option C:	Maxima of valence band and conduction band
Option D:	None of the above
Q6.	Type I multiferroics are the materials in which the ferroelectricity and

	magnetization occurs at
Option A:	Same temperature
Option B:	Different temperature
Option C:	Zero temperature
Option D:	None of these
Q7.	In Newton's rings experiment, the diameter of $4^{\text {th }}$ and $12^{\text {th }}$ dark ring are 0.4 cm and 0.7 cm respectively. Find the diameter of $20^{\text {th }}$ dark ring.
Option A:	0.95 cm
Option B:	0.91 cm
Option C:	0.93 cm
Option D:	0.99 cm
Q8.	Matter waves travels
Option A:	With the same speed of light
Option B:	Faster than light
Option C:	Slower than light
Option D:	None of the above
Q9.	Which of the following equation describes Bragg's law of diffraction? (Assume that all symbols have their usual meaning.)
Option A:	$2 \mathrm{~d} \sin \theta=\lambda$
Option B:	$2 \mathrm{~d}=\mathrm{n} \lambda$
Option C:	$2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda$
Option D:	$2 \mathrm{~d}=\mathrm{n} \lambda \sin \theta$
Q10.	In Newton's rings experiment the __lens is used.
Option A:	Convex
Option B:	Concave
Option C:	Plano-convex
Option D:	Plano-concave
Q11.	In intrinsic Ge the carrier concentration is $2.5 \times 10^{19} / \mathrm{m}^{3}$. The electron and hole mobilities are $0.39 \mathrm{~m}^{2} / \mathrm{v}$-sec and $0.17 \mathrm{~m}^{2} / \mathrm{V}$-sec. Find the resistance of a Ge rod of $2 \mathrm{~cm} \times 1 \mathrm{~mm} \times 1 \mathrm{~mm}$ dimension.
Option A:	$8.928 \times 10^{3} \Omega$
Option B:	$7.065 \times 10^{3} \Omega$
Option C:	$6.546 \times 10^{3} \Omega$
Option D:	$5.546 \times 10^{3} \Omega$
Q12.	N-type Ge sample has donor concentration 10^{21} atoms $/ \mathrm{m}^{3}$. What Hall voltage would you expect if current of 1 mA and magnetic field 0.5 T is applied across 2 mm thick sample.
Option A:	2.50 mV
Option B:	1.56 mV
Option C:	3.56 mV

Option D:	9 mV
Q13.	An electron is bound in an one dimensional potential well of width 2 A . Find its energy value in the ground state?
Option A:	$1.51 \times 10^{-18} \mathrm{~J}$
Option B:	$2.53 \times 10^{-18} \mathrm{~J}$
Option C:	$3.5210^{-18} \mathrm{~J}$
Option D:	$4.62 \times 10^{-18} \mathrm{~J}$
Q14.	Find the thickness of the soap film which appears yellow ($\lambda=5896 A$) in reflection when it is illuminated by white light at an angle of 45°.Given refractive index of the thin film $=1.33$
Option A:	$2300 \mathrm{~A}^{\circ}$
Option B:	$3500 \mathrm{~A}^{\circ}$
Option C:	$6500 \mathrm{~A}^{0}$
Option D:	$1308 \mathrm{~A}^{\circ}$
Q15.	Which of the following is not a characteristic of wave function?
Option A:	Continuous
Option B:	Single-valued
Option C:	Differentiable
Option D:	Physically significant
Q16.	Determine the de-Brogile wavelength of an electron accelerated by a potential difference of 150 V .
Option A:	$2.0056 \times 10^{-10} \mathrm{~m}$
Option B:	$2.5213 \times 10^{-10} \mathrm{~m}$
Option C:	$1.0031 \times 10^{-10} \mathrm{~m}$
Option D:	$1.9068 \times 10^{-10} \mathrm{~m}$
Q17.	Calculate the frequency and wavelength of a photon whose energy is 75 eV
Option A:	Frequency $=18.13 \times 10^{15} \mathrm{~Hz}$, Wavelength $=165.5 \mathrm{~A}^{0}$
Option B:	Frequency $=20.25 \times 10^{15} \mathrm{~Hz}$, Wavelength $=189 \mathrm{~A}^{0}$
Option C:	Frequency $=35.56 \times 10^{15} \mathrm{~Hz}$, Wavelength $=192 \mathrm{~A}^{0}$
Option D:	Frequency $=65.23 \times 10^{15} \mathrm{~Hz}$, Wavelength $=175 \mathrm{~A}^{0}$
Q18.	What is a probability of an electron being thermally excited to the conduction band is Si at 30 . The band gap energy is 1.12 eV
Option A:	6.5×10^{-10}
Option B:	8.9×10^{-10}
Option C:	3.9×10^{-10}
Option D:	9.6×10^{-10}
Q19.	The magnetic lines of force cannot penetrate the body of a superconductor, a phenomenon is known as
Option A:	Isotopic effect

Option B:	Meissner effect
Option C:	BCS theory
Option D:	Josephson effect
Q20.	Calculate the maximum order of diffraction if X -rays of wavelength 0.819 A is incident on a crystal of lattice spacing 0.282 nm .
Option A:	6
Option B:	5
Option C:	4
Option D:	3
Q21.	Electrons can not pre-exist in free states in a nucleus. We can prove this using
Option A:	Time dependent Schrödinger equation
Option B:	Time independent Schrödinger equation
Option C:	Heisenberg's uncertainty principle
Option D:	Option A \& Option B
Q22.	The temperature at which conductivity of a material becomes infinite is called
Option A:	Critical temperature
Option B:	Absolute temperature
Option C:	Mean temperature
Option D:	Crystallization temperature
Q23.	A wedge shaped air film is illuminated by light of wavelength $4650 A^{\circ}$. The angle of wedge is 40 seconds. Calculate the separation between two consecutive fringes.
Option A:	$2.536 \times 10^{-3} \mathrm{~m}$
Option B:	$1.199 \times 10^{-3} \mathrm{~m}$
Option C:	$3.650 \times 10^{-3} \mathrm{~m}$
Option D:	$4.569 \times 10^{-3} \mathrm{~m}$
Q24.	Multiferroics are the materials that exhibit properties like
Option A:	Ferromagnetism
Option B:	Ferroelectricity
Option C:	Ferro elasticity
Option D:	All of the above
Q25.	A plane is parallel to an axis. What is its Miller Index?
Option A:	Infinity
Option B:	Zero
Option C:	One
Option D:	Finite

